1 Oskar is designing a building. Fig. 12 shows his design for the end wall and the curve of the roof. The units for x and y are metres.

Fig. 12
(i) Use the trapezium rule with 5 strips to estimate the area of the end wall of the building.
(ii) Oskar now uses the equation $y=-0.001 x^{3}-0.025 x^{2}+0.6 x+9$, for $0 \leqslant x \leqslant 15$, to model the curve of the roof.
(A) Calculate the difference between the height of the roof when $x=12$ given by this model and the data shown in Fig. 12.
(B) Use integration to find the area of the end wall given by this model.

Fig. 7 shows a curve and the coordinates of some points on it.

Fig. 7
Use the trapezium rule with 6 strips to estimate the area of the region bounded by the curve and the positive x - and y-axes.

3 A farmer digs ditches for flood relief. He experiments with different cross-sections. Assume that the surface of the ground is horizontal.
(i)

Fig. 9.1
Fig. 9.1 shows the cross-section of one ditch, with measurements in metres. The width of the ditch is 1.2 m and Fig. 9.1 shows the depth every 0.2 m across the ditch.

Use the trapezium rule with six intervals to estimate the area of cross-section. Hence estimate the volume of water that can be contained in a 50 -metre length of this ditch.
(ii) Another ditch is 0.9 m wide, with cross-section as shown in Fig. 9.2.

Fig. 9.2
With x - and y-axes as shown in Fig. 9.2, the curve of the ditch may be modelled closely by $y=3.8 x^{4}-6.8 x^{3}+7.7 x^{2}-4.2 x$.
(A) The actual ditch is 0.6 m deep when $x=0.2$. Calculate the difference between the depth given by the model and the true depth for this value of x.
(B) Find $\int\left(3.8 x^{4}-6.8 x^{3}+7.7 x^{2}-4.2 x\right) \mathrm{d} x$. Hence estimate the volume of water that can be contained in a 50 -metre length of this ditch.

4 (a)

Fig. 11.1

A boat travels from P to Q and then to R . As shown in Fig. 11.1, Q is 10.6 km from P on a bearing of 045°. R is 9.2 km from P on a bearing of 113°, so that angle QPR is 68°.

Calculate the distance and bearing of R from Q .
(b) Fig. 11.2 shows the cross-section, EBC, of the rudder of a boat.

rudder

detail of construction

Fig. 11.2
$B C$ is an arc of a circle with centre A and radius 80 cm . Angle $\mathrm{CAB}=\frac{2 \pi}{3}$ radians.
EC is an arc of a circle with centre D and radius $r \mathrm{~cm}$. Angle CDE is a right angle.
(i) Calculate the area of sector ABC .
(ii) Show that $r=40 \sqrt{3}$ and calculate the area of triangle CDA.
(iii) Hence calculate the area of cross-section of the rudder.

Fig. 12

A water trough is a prism 2.5 m long. Fig. 12 shows the cross-section of the trough, with the depths in metres at 0.1 m intervals across the trough. The trough is full of water.
(i) Use the trapezium rule with 5 strips to calculate an estimate of the area of cross-section of the trough.

Hence estimate the volume of water in the trough.
(ii) A computer program models the curve of the base of the trough, with axes as shown and units in metres, using the equation $y=8 x^{3}-3 x^{2}-0.5 x-0.15$, for $0 \leqslant x \leqslant 0.5$.

Calculate $\int_{0}^{0.5}\left(8 x^{3}-3 x^{2}-0.5 x-0.15\right) \mathrm{d} x$ and state what this represents.
Hence find the volume of water in the trough as given by this model.

